Application of New Optically Pure Ketene Equivalents Derived from Tartaric Acids to the Total, Asymmetric Syntheses of (+)-6-Deoxycastanospermine and (+)-6-Deoxy-6-fluorocastanospermine

Jean-Louis Reymond and Pierre Vogel*

Section de Chimie de I'Universite de Lausanne, CH- I005 Lausanne, Switzerland

Condensation of **di-0-acetyl-(S,S)-tartaric** anhydride with the diethyl acetal of N-ethylaminoacetaldehyde gave (1 S,5S,7S)-3-ethyl-2-oxo-6,8-dioxa-3-azabicyclo[3.2.1]octane-7-carboxylic acid *(8)* whose 1 -cyanovinyl ester **(10)** added to furan to give, after two recrystallizations, an optically pure 7-oxabicyclo[2.2.1]hept-5-en-2-yl derivative (11) that was converted into (+)-6-deoxycastanospermine **(+)-(2)** and **(+)-6-deoxy-6-fluorocastanospermine (+)-(3).**

Castanospermine **(+)-(1)** is a physiologically active polyhydroxylated indolizidine alkaloid isolated from seeds of *Castanospermum australel* and from dried pods of *Alexa leiopetala.*² It is an inhibitor of several glucosidases³ with promising anti-cancer,⁴ anti-virus,⁵ and anti-AIDS⁶ activities. Syntheses of $(+)$ - (1) using carbohydrates as starting materials have been reported.⁷ Fleet and co-workers⁸ have obtained 6-epi- and **1,6-diepi-castanospermine** from L-gulonolactone; Richardson and co-workers derived 1-deoxycastanospermine from p-glucose⁹ and 1,8-dideoxy-6-epicastanospermine from a 2-azido-altro-pyranoside derivative. 10 We report here the highly stereoselective, total syntheses of 6-deoxycastanospermine $(+)$ - (2) and 6-deoxy-6-fluorocastanospermine $(+)$ - (3) starting with $(-)$ - $(1S,4S)$ -7-oxabicyclo^[2.2.1]hept-5-en-2-one $(-)$ -(4) a 'naked sugar'.¹¹ A new method for the preparation of enone **(-)-(4)** is presented. Its transformation into **(+)-(2)** and **(+)-(3)** follows an approach we had developed for the synthesis of (\pm) - (1) .¹²

Di-0-acetyl-(S, S)-tartaric anhydride **(S,S)-(S)** was treated with ethylaminoacetaldehyde diethyl acetal (6) in CH₂Cl₂. After treatment with MeOH and $S OCl₂$, and then with H2S04-Si02, ester **(7)** was obtained {54%, m.p. 75-78"C, $\lbrack \alpha \rbrack_{D}^{20}$ +52.5° (c 1, CH₂Cl₂)}. Acidic hydrolysis of (7) $(HCl-H₂O, 75[°]C, 3 h)$ gave acid **(8)** (100%) which was transformed into (9) (92%) with SOCl₂ (75 °C, crystallization from Et₂O-light petroleum). Acyl chloride (9) and pyruvonitrile were condensed in CH_2Cl_2 -pyridine $(0^{\circ}C, 20 h)$ to give the new, optically pure, ketene equivalent **(10) {86-3%,** m.p. 90-91.5 °C, $[\alpha]_D^{\hat{2}0}$ +53.9° (c 1, CH₂Cl₂)). The ZnBr₂induced Diels-Alder addition of **(10)** to furan (20 "C, 7 days) gave a mixture of diastereoisomeric adducts from which pure (11) ${m.p. 147-148 °C (decomp.)}$; $[\alpha]_D^{20} - 38 ° (c 1, CH_2Cl_2)}$ could be obtained in 35% yield [diastereoisomeric excess mirine were condensed in CH₂Cl₂-pyridine (0 C, 20 ii) to give
the new, optically pure, ketene equivalent (10) {86.3%, m.p.
90—91.5 °C, $[\alpha]_D^{20} + 53.9^{\circ}$ (c 1, CH₂Cl₂)}. The ZnBr₂-
induced Diels-Alder additio

Scheme 1. Reagents and conditions: i, 20 $^{\circ}$ C, 1 h, then MeOH + SOCl₂, 20 $^{\circ}$ C, 24 h, then H₂SO₄- iO₂ (CH₂Cl₂), 160 $^{\circ}$ C, 54%; ii, conc. HCl-H₂O (1:20), 75°C, 3 h, then drying *in vacuo* over P₄O₁₀; iii, SOCl₂, 75°C, crystalliza..on from Et₂O-light petroleum; iv, pyruvonitrile (1 equiv.), pyridine (CH₂Cl₂), 0–20°C, 20 h, 86.3%; v, furan (solvent), finely ground, dried 4 Å molecular sieves, ZnBr₂ (1 equiv.), 20 $^{\circ}$ C, 7 days, in the dark, 2 recrystallizations from AcOEt, 35%; vi, residue of mother liquors, anh. toluene, 110 $^{\circ}$ C, 33%; vii, 1 м NaOH, 40% aq. CH₂O, 20°C, 4 h, 96%.

Scheme 2. *Reagents and conditions:* i , Br_2 (1.1 equiv.), CH_2Cl_2 , -90 °C, then aq. NaHCO₃, -90 °C, 98%; ii, 85%-m-chloroperbenzoic acid, NaHCO₃ (CH₂Cl₂), 5 °C, 96%; iii, see ref. 12, overall yield: 43%; iv, $BH_3 \cdot Me_2S$ (THF), 20 °C, 4 days, 25%; v, H_2-Pd-C $(MeOH-HCO₂H)$, $20 °C$, 16 h, 97%; vi, HF-Et₃N, 2-t-butylimino-2diethylamino- **1,3-dimethylperhydr0-1,3,2-diazaphosphorine** on polystyrene, 95 °C, 2 days, then Ac₂O-pyridine/4-N, N-dimethylaminopyridine (DMAP), 20° C, 4 days, 52% ; vii, BH₃·Me₂S (THF), 20° C, 1 day; then HCl-MeOH-H20, **70** "C, 4 days, 83%.

 $(d.e.)$ >99% by 360 MHz ¹H NMR] after two recrystallizations from AcOEt. When the residue of the mother liquors was heated in toluene (115 °C, 12 h), (10) was recovered in 33% yield. Saponification of (11) (NaOH, H_2O , CH₂O, 20 °C) afforded enone $(-)$ - (4) (96%) and the chiral auxiliary (8)

(78%). This method of preparation of $(-)$ - (4) was more practical and easier to scale up than that based on the Zn12-induced Diels-Alder addition of furan to 1-cyanovinyl $(1R)$ -camphanate¹¹ [$(1R)$ -camphanic acid as chiral auxiliary].

Bromination of the dibenzyl acetal (12) derived from $(-)$ -(4)¹³ afforded (13) {98%, m.p. 92--92.5 °C, $[\alpha]_D^2$ ⁰ +69° $(c \ 1, CH_2Cl_2)$. Baeyer-Villiger oxidation of (13) gave the $β$ -*L*-arabino-hexofuranosidurono-6,1-lactone derivative (14) $(96\%, \text{ m.p. } 115-116 \degree \text{C}, [\alpha]_{D}^{20} +135 \degree (c \space 1, \space CH_2Cl_2)$ which was then converted into epoxy-lactam (15) $(43\%$, oil).¹² Treatment of (15) with BH_3 ·Me₂S in anhydrous tetrahydrofuran (THF) led to a mixture of compounds from which (16) $\{25\%, \text{ oil}, \frac{\alpha}{\alpha} \cdot b^{25} + 3.2^{\circ} \text{ (c 0.62, CH}_2Cl_2) \}$ was the only amine that could be isolated (by column chromatography, Dowex-H+, then silica gel). Hydrogenolysis of the benzylic ether gave $(+)$ -(2) {97%, oil $[\alpha]_D^{25}$ +36° *(c* 2.5, EtOH)}.

The reaction of (15) with HF Et₃N (95 °C, 2 days) led to a stereoselective ring opening of the epoxide moiety with attack on $C(6)$ by the fluoride anion. After acetylation, $(Ac_2O$ pyridine), (17) $\{52\%$, m.p. 178—179 °C, $[\alpha]_D^{25}$ +162° (c 1, CH_2Cl_2) was isolated. Reduction of (17) with BH_3 Me₂S in THF, followed by hydrolysis of the acetates (HCl, H_2O- MeOH, 70 °C) afforded the partially protected 6-deoxy-6fluorocastanospermine (18) $\{83\%$, oil, $[\alpha]_{D}^{25}$ +52° (c 0.42, CH_2Cl_2 }. Hydrogenolysis of the benzylic ether gave $(+)$ - (3) $(93\%$, colourless crystals, m.p. 142-143 °C, $\bar{[\alpha]}_{D}^{25} + 88^{\circ}$ (c 0.16, EtOH)} **.I4**

The structures of $(+)$ - (2) , $(+)$ - (3) , and derivatives (16) -(18) were confirmed by their spectral data and by comparison with those reported for $(+)$ - $(1)^{1,7,12}$ [e.g. ¹H NMR (CDCl₃, 250 MHz) **of (16):** *6* 3.56 (ddd, *3J* 11.0,9.0,5.0 Hz, 7-H), 3.50 $(t, 3J 9.0, 8\text{-H})$; of (18): δ 4.54 (dddd, $2J_{\text{H,F}}$ 51, $3J_{\text{H,H}}$ 14, 8.5, $7\text{-}H$), 3.60 (t, $3J_{\text{H,H}}$ 9.0, 8-H), 3.33 (ddd, $2J_{\text{H,H}}$ 10, $3J_{\text{H,F}}$ = 5.5, 5.5, 6-H), 4.30 (m, 1-H), 3.75 (ddd, ${}^{3}J_{\text{H,F}}$ 15, ${}^{3}J_{\text{H,H}}$ 9, 8.5, ${}^{3}J_{\text{H},\text{H}} = 2.0$, 5-H_{eq}]. For all these compounds, the ¹H NMR spectra suggested conformations $(NC₇)$ chair for the six-membered ring) similar to that of $(+)$ - (1) .^{1,7}

The pK_a values of the conjugate acids of $(+)$ - (1) , $(+)$ - (2) , and $(+)$ - (3) have been determined by the titrimetric method to be 6.01 \pm 0.01, 7.31 \pm 0.02, and 5.09 \pm 0.01, respectively, at 25 °C (H₂O).¹⁵ The enhanced acidity of $(+)$ -(3)-H⁺ compared with that of $(+)$ - (1) - H^+ and $(+)$ - (2) - H^+ was **expected and can be attributed to the inductive effect of the fluoro substituent.**

We thank Hoffmann-La Roche and Cie, AG Basel, the Fonds Herbette, Lausanne, and the Swiss National Science Foundation for generous financial support.

Received, 1st May 1990; Corn. OlO1943G

References

- L. D. Hohenschutz, E. A. Bell, **P.** J. Jewess, D. P. Leworthy, R. J. Pryce, E. Arnold, and J. Clardy, *Phytochemistry,* **1981,20, 811.**
- 2 R. J. Nash, L. E. Fellows, J. V. Dring, C. H. Stirton, D. Carter, M. P. Hegarty, and E. A. Bell, *Phytochemistry,* **1988, 27, 1403.**
- **R.** Saul, J. P. Chambers, R. J. Molyneux, and A. D. Elbein, *Arch. Biochem. Biophys.,* **1983, 221, 593;** B. C. Campbell, R. J. Molyneux, and **K.** C. Jones, *J. Chem. Ecol,,* **1987, 13, 1759;** T. Szumilo, G. Kaushal, and **A.** D. Elbein, *Arch. Biochem. Biophys.,* **1986,247, 261.**
- M. J. Humphries, K. Matsumoto, **S. L.** White, and K. Olden, *Cancer Res.,* **1986,46, 5215.**
- P. **S.** Sunkara, T. **L.** Bowlin, P. **S.** Liu, and A. Sjoerdsma, *Biochem. Biophys. Res. Commun.,* **1987, 148,** *206.*
- **6** B. D. Walker, M. Kowalski, W. C. Goh, K. Kozarsky, M. Krieger, C. Rosen, **L.** Rohrschneider, W. A. Hazeltine, and W. **A.** Sodroski, *Proc. Natl. Acad. Sci. USA,* **1987,84,8120;** A. **S.** Tyms, E. M. Berrie, T. A. Ryder, R. J. Nash, M. P. Hegarty, D. L. Taylor, **M.** A. Moberley, J. M. Davis, E. A. Bell, D. J. Jeffries, D. Taylor-Robinson, and L. E. Fellows, *Lancet,* **1987, 1026;** R. A. Gruters, J. J. Neefjes, M. Tersmette, R. E. **Y.** de Goede, **A.** Tulp, H. G. Huisman, F. Miedema and H. L. Ploegh, *Nature (London),* **1987, 330, 74.**
- **7** H. Setoi, **H.** Takeno and **M.** Hashimoto, *Tetrahedron Lett.,* **1985, 26, 4617;** H. Hamana, **N.** Ikota, and B. Ganem, *J. Org. Chem.,* **1987, 52, 5492.**
- **8** G. W. J. Fleet, N. G. Ramsden, R. J. Molyneux, andG. **S.** Jacob, *Tetrahedron Lett.,* **1988, 29, 3603.**
- **9** D. Hendry, L. Hough, and A. C. Richardson, *Tetrahedron Lett.,* **1987, 28, 4597.**
- **10** D. Hendry, L. Hough, and A. C. Richardson, *Tetrahedron,* **1988, 44, 6153.**
- **11** P. Vogel, D. Fattori, F. Gasparini, and C. LeDrian, *Synlett.,* **1990, 173.**
- **12** J.-L. Reymond and P. Vogel, *Tetrahedron Lett.,* **1989, 30, 705.**
- **13** C. LeDrian, J.-P. Vionnet, and P. Vogel, *Helv. Chim. Acta,* **1990, 73, 161.**
- **14** For fluorinated carbohydrates and analogues, see *e.g.* A. A. E. Penglis, *Adv. Carbohydr. Chem. Biochem.,* **1981, 38, 195;** R. T. Schwartz and R. Datema, *ibid.,* **1982,40, 287.**
- 15 See *e.g.* pK_a of 1-deoxynojirimycin: 6.6 $(H_2O, 25^{\circ}C)$: S. Inouye, T. Tsuruoka, T. Ito, and T. Niida, *Tetrahedron,* **1968, 24, 2125.**